Halla la ordenada y1 en la parábola de la abcisa dada y calcula las coordenadas del simétrico de este punto en la parábola.

Imprime la la ficha en pdf y envíasela a tu profesor.

y=-2x^{2}+4x-2

x1 = 2

Calculamos y1 sustituyendo x1 en la ecuación: y1 = -2

Esta es también la ordenada del simétrico: ys = -2

xs = x1 - 2·(x1 - x_eje) = -b/a - x1

xs = 0

y=2x^{2}-8x+6

x1 = 1

y1 = ...

ys = ...

xs = ...

y=-2x^{2}+4x

x1 = 1

y1 = ...

ys = ...

xs = ...

y=2x^{2}+1

x1 = 5

y1 = ...

ys = ...

xs = ...

y=-3x^{2}+2

x1 = 3

y1 = ...

ys = ...

xs = ...

y=3x^{2}+12x+14

x1 = -4

y1 = ...

ys = ...

xs = ...

y=-2x^{2}-1

x1 = 5

y1 = ...

ys = ...

xs = ...

y=2x^{2}+2

x1 = 2

y1 = ...

ys = ...

xs = ...

y=3x^{2}+18x+28

x1 = 1

y1 = ...

ys = ...

xs = ...

y=-x^{2}-6x-11

x1 = 4

y1 = ...

ys = ...

xs = ...

y=-3x^{2}+12x-12

x1 = 2

y1 = ...

ys = ...

xs = ...

y=-3x^{2}-6x-2

x1 = 2

y1 = ...

ys = ...

xs = ...

y=-2x^{2}-12x-20

x1 = 3

y1 = ...

ys = ...

xs = ...

y=x^{2}+2x+1

x1 = -3

y1 = ...

ys = ...

xs = ...

y=-3x^{2}+18x-29

x1 = 0

y1 = ...

ys = ...

xs = ...

y=-3x^{2}+6x-3

x1 = 4

y1 = ...

ys = ...

xs = ...

y=-2x^{2}-1

x1 = 5

y1 = ...

ys = ...

xs = ...

y=3x^{2}-12x+13

x1 = 1

y1 = ...

ys = ...

xs = ...

y=x^{2}+6x+9

x1 = -2

y1 = ...

ys = ...

xs = ...

y=-2x^{2}+4x-4

x1 = -5

y1 = ...

ys = ...

xs = ...

y=-x^{2}+4x-2

x1 = -3

y1 = ...

ys = ...

xs = ...

y=2x^{2}-12x+16

x1 = 5

y1 = ...

ys = ...

xs = ...

y=-2x^{2}-1

x1 = 3

y1 = ...

ys = ...

xs = ...

y=2x^{2}-4x

x1 = -3

y1 = ...

ys = ...

xs = ...