Resuelve los siguientes sistemas y ecuaciones

log_{4}(x+14)^{8}-log_2\nthroot{6}{x+14}=1

 

 

 

 

 

 

log_{3}(x)-log_{3}(y)=3

log_{6}(3\cdot x)+log_{6}(y+45)=4+log_{6}(9)

 

 

 

 

 

 

log_{2}(x)-log_{2}(y)=2

log_{2}(4\cdot x)+log_{2}(y+2)=4+log_{2}(8)

 

 

 

 

 

 

6log5+ylog25=xlog5

xlog4-2ylog8=\frac{1}3log64

 

 

 

 

 

 

log_{25}(x+8)^{6}-log_5\nthroot{4}{x+8}=1

 

 

 

 

 

 

log_{49}(x+13)^{2}-log_7\nthroot{6}{x+13}=1

 

 

 

 

 

 

log_{5}(x)-log_{5}(y)=3

log_{5}(3\cdot x)+log_{5}(y+24)=5+log_{5}(3)

 

 

 

 

 

 

log_5(x+y)-log_5(y-9)=1

5^{x}=5^1\cdot25^{y}

 

 

 

 

 

6log5+ylog25=xlog5

xlog9-2ylog27=\frac{1}6log531441

 

 

 

 

 

 

log_{10}(x)-log_{10}(y)=3

log_{20}(3\cdot x)+log_{20}(y+158)=4+log_{20}(6)

 

 

 

 

 

 

log_{4}(x+6)^{10}-log_2\nthroot{5}{x+6}=1

 

 

 

 

 

 

log_{36}(x+12)^{6}-log_6\nthroot{7}{x+12}=1

 

 

 

 

 

 

log_{36}(x+11)^{12}-log_6\nthroot{5}{x+11}=1

 

 

 

 

 

 

6log4+ylog16=xlog4

xlog9-2ylog27=\frac{1}5log59049

 

 

 

 

 

 

3log5+ylog25=xlog5

xlog9-2ylog27=\frac{1}2log81

 

 

 

 

 

 

log_7(x+y)-log_7(y-8)=1

7^{x}=7^3\cdot7^{y}

 

 

 

 

 

log_{10}(x)-log_{10}(y)=2

log_{10}(3\cdot x)+log_{10}(y+7)=3+log_{10}(9)

 

 

 

 

 

 

log_7(x+y)-log_7(y-5)=1

7^{x}=7^3\cdot49^{y}

 

 

 

 

 

log_{49}(x+4)^{6}-log_7\nthroot{6}{x+4}=1

 

 

 

 

 

 

log_3(x+y)-log_3(y-5)=1

3^{x}=3^6\cdot27^{y}

 

 

 

 

 

log_6(x+y)-log_6(y-6)=1

6^{x}=6^4\cdot36^{y}

 

 

 

 

 

log_{36}(x+4)^{10}-log_6\nthroot{3}{x+4}=1

 

 

 

 

 

 

12log4+ylog16=xlog4

xlog4-2ylog8=\frac{1}5log1024

 

 

 

 

 

 

log_{3}(x)-log_{3}(y)=3

log_{3}(2\cdot x)+log_{3}(y+1)=4+log_{3}(4)