Resuelve los siguientes sistemas y ecuaciones

16log5+ylog25=xlog5

xlog25-2ylog125=\frac{1}6log244140625

 

 

 

 

 

 

log_{9}(x+15)^{10}-log_3\nthroot{7}{x+15}=1

 

 

 

 

 

 

log_{4}(x+13)^{2}-log_2\nthroot{4}{x+13}=1

 

 

 

 

 

 

6log2+ylog4=xlog2

xlog16-2ylog64=\frac{1}6log16777216

 

 

 

 

 

 

log_{5}(x)-log_{5}(y)=3

log_{10}(2\cdot x)+log_{10}(y+79)=4+log_{10}(2)

 

 

 

 

 

 

log_{49}(x+9)^{2}-log_7\nthroot{4}{x+9}=1

 

 

 

 

 

 

log_7(x+y)-log_7(y-1)=1

7^{x}=7^3\cdot49^{y}

 

 

 

 

 

log_{4}(x+3)^{6}-log_2\nthroot{3}{x+3}=1

 

 

 

 

 

 

11log3+ylog9=xlog3

xlog16-2ylog64=\frac{1}2log256

 

 

 

 

 

 

3log10+ylog100=xlog10

xlog9-2ylog27=\frac{1}2log81

 

 

 

 

 

 

log_3(x+y)-log_3(y-6)=1

3^{x}=3^2\cdot3^{y}

 

 

 

 

 

log_{36}(x+2)^{10}-log_6\nthroot{3}{x+2}=1

 

 

 

 

 

 

log_{25}(x+16)^{8}-log_5\nthroot{7}{x+16}=1

 

 

 

 

 

 

log_5(x+y)-log_5(y-8)=1

5^{x}=5^3\cdot25^{y}

 

 

 

 

 

log_{10}(x)-log_{10}(y)=2

log_{20}(4\cdot x)+log_{20}(y+1598)=4+log_{20}(8)

 

 

 

 

 

 

log_2(x+y)-log_2(y-2)=1

2^{x}=2^3\cdot4^{y}

 

 

 

 

 

log_{25}(x+14)^{6}-log_5\nthroot{3}{x+14}=1

 

 

 

 

 

 

log_{36}(x+8)^{4}-log_6\nthroot{4}{x+8}=1

 

 

 

 

 

 

log_{5}(x)-log_{5}(y)=2

log_{15}(4\cdot x)+log_{15}(y+132)=3+log_{15}(12)

 

 

 

 

 

 

14log2+ylog4=xlog2

xlog4-2ylog8=\frac{1}5log1024

 

 

 

 

 

 

13log6+ylog36=xlog6

xlog4-2ylog8=\frac{1}6log4096

 

 

 

 

 

 

log_{49}(x+11)^{10}-log_7\nthroot{4}{x+11}=1

 

 

 

 

 

 

log_2(x+y)-log_2(y-3)=1

2^{x}=2^4\cdot8^{y}

 

 

 

 

 

log_5(x+y)-log_5(y-10)=1

5^{x}=5^2\cdot125^{y}