Resuelve los siguientes sistemas y ecuaciones

7log3+ylog9=xlog3

xlog25-2ylog125=\frac{1}5log9765625

 

 

 

 

 

 

log_{3}(x)-log_{3}(y)=1

log_{9}(3\cdot x)+log_{9}(y+240)=3+log_{9}(9)

 

 

 

 

 

 

13log10+ylog100=xlog10

xlog9-2ylog27=\frac{1}5log59049

 

 

 

 

 

 

log_6(x+y)-log_6(y-9)=1

6^{x}=6^2\cdot6^{y}

 

 

 

 

 

log_3(x+y)-log_3(y-6)=1

3^{x}=3^6\cdot3^{y}

 

 

 

 

 

log_2(x+y)-log_2(y-8)=1

2^{x}=2^1\cdot4^{y}

 

 

 

 

 

log_{2}(x)-log_{2}(y)=3

log_{4}(2\cdot x)+log_{4}(y+31)=4+log_{4}(2)

 

 

 

 

 

 

log_{5}(x)-log_{5}(y)=3

log_{15}(3\cdot x)+log_{15}(y+404)=4+log_{15}(3)

 

 

 

 

 

 

log_5(x+y)-log_5(y-2)=1

5^{x}=5^5\cdot5^{y}

 

 

 

 

 

log_7(x+y)-log_7(y-5)=1

7^{x}=7^4\cdot343^{y}

 

 

 

 

 

log_{5}(x)-log_{5}(y)=1

log_{10}(2\cdot x)+log_{10}(y+199)=3+log_{10}(2)

 

 

 

 

 

 

log_{49}(x+12)^{10}-log_7\nthroot{6}{x+12}=1

 

 

 

 

 

 

11log4+ylog16=xlog4

xlog25-2ylog125=\frac{1}3log15625

 

 

 

 

 

 

log_{3}(x)-log_{3}(y)=3

log_{9}(4\cdot x)+log_{9}(y+240)=4+log_{9}(12)

 

 

 

 

 

 

2log3+ylog9=xlog3

xlog16-2ylog64=\frac{1}5log1048576

 

 

 

 

 

 

log_{2}(x)-log_{2}(y)=3

log_{4}(2\cdot x)+log_{4}(y+29)=4+log_{4}(6)

 

 

 

 

 

 

log_5(x+y)-log_5(y-9)=1

5^{x}=5^2\cdot125^{y}

 

 

 

 

 

log_6(x+y)-log_6(y-1)=1

6^{x}=6^5\cdot36^{y}

 

 

 

 

 

log_{2}(x)-log_{2}(y)=2

log_{6}(2\cdot x)+log_{6}(y+321)=4+log_{6}(6)

 

 

 

 

 

 

log_{4}(x+4)^{8}-log_2\nthroot{5}{x+4}=1

 

 

 

 

 

 

log_{4}(x+13)^{2}-log_2\nthroot{5}{x+13}=1

 

 

 

 

 

 

3log10+ylog100=xlog10

xlog4-2ylog8=\frac{1}4log256

 

 

 

 

 

 

log_{2}(x)-log_{2}(y)=1

log_{2}(3\cdot x)+log_{2}(y+2)=3+log_{2}(6)

 

 

 

 

 

 

log_2(x+y)-log_2(y-10)=1

2^{x}=2^2\cdot4^{y}