| \frac{1}{x}+\frac{x+2}{x^2-2x}+\frac{x}{x^2-4}=\frac{3x+4}{x^2-4} | \frac{1}{x^2+x+1}+\frac{x^2+2}{x^3-1}=\frac{1}{x-1} |
| \frac{-5}{x}+\frac{x-25}{x^2-5x}-\frac{16x}{x^2-30x+125}=\frac{-20}{x-25} | \frac{1}{4x^4+2x^2+1}+\frac{4x^4+2}{8x^6-1}=\frac{1}{2x^2-1} |
| \frac{1}{x^4+x^3+x^2+x+1}+\frac{x^4+x^3+x^2+2}{x^5-1}=\frac{1}{x-1} | \frac{4}{x}+\frac{x+16}{x^2-4x}-\frac{25x}{x^2+12x-64}=\frac{-20}{x+16} |
| \frac{-2}{x}+\frac{x-8}{x^2-4x}+\frac{x}{x^2-12x+32}=\frac{8}{x^2-12x+32} | \frac{1}{x^4+x^2+1}+\frac{x^4+2}{x^6-1}=\frac{1}{x^2-1} |
| \frac{-3}{x}+\frac{x-6}{x^2-2x}-\frac{4x}{x^2-8x+12}=\frac{-6}{x-6} | \frac{-4}{x}+\frac{x-20}{x^2-5x}+\frac{x}{x^2-25x+100}=\frac{-2x+60}{x^2-25x+100} |
| \frac{1}{x^4+x^3+2x^2+x+1}-\frac{2}{x^4+x^2+1}=\frac{-1}{(x^2-x+1)(x^2+1)} | \frac{2x+4}{x^2-1}+\frac{x+2}{x^2-3x+2}=\frac{3x+6}{x^2-x-2} |