\frac{-3}{x}+\frac{x-9}{x^2-3x}-\frac{4x}{x^2-12x+27}=\frac{-6}{x-9} | \frac{1}{4x^4+2x^2+1}+\frac{4x^4+2}{8x^6-1}=\frac{1}{2x^2-1} |
\frac{1}{x^4+x^3+2x^2+x+1}-\frac{2}{x^4+x^2+1}=\frac{-1}{(x^2-x+1)(x^2+1)} | \frac{3}{x}+\frac{x+15}{x^2-5x}+\frac{x}{x^2+10x-75}=\frac{5x+60}{x^2+10x-75} |
\frac{2x+4}{x^2-1}+\frac{x+2}{x^2-3x+2}=\frac{3x+6}{x^2-x-2} | \frac{-4}{x}+\frac{x-12}{x^2-3x}-\frac{9x}{x^2-15x+36}=\frac{-12}{x-12} |
\frac{1}{x^4+x^2+1}+\frac{x^4+2}{x^6-1}=\frac{1}{x^2-1} | \frac{5}{x}+\frac{x+15}{x^2-3x}-\frac{36x}{x^2+12x-45}=\frac{-30}{x+15} |
\frac{4}{x}+\frac{x+20}{x^2-5x}+\frac{x}{x^2+15x-100}=\frac{6x+100}{x^2+15x-100} | \frac{1}{x^2+x+1}+\frac{x^2+2}{x^3-1}=\frac{1}{x-1} |
\frac{1}{x^4+x^3+x^2+x+1}+\frac{x^4+x^3+x^2+2}{x^5-1}=\frac{1}{x-1} | \frac{1}{x}+\frac{x+4}{x^2-4x}+\frac{x}{x^2-16}=\frac{3x+8}{x^2-16} |